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A complex Of measurements of the neutron flux in a nuclear reactor, based on 
which sources of radiation of special form are reconstructed uniquely, is 
studied. 

I. If all characteristics of a reactor are known (the total cross section Z, the scat- 
tering function Zs, and the source function F), then the incoming neutron flux density at the 
surface of the reactor ~ and the initial neutron distribution over space and over velocities 

are usually measured in order to determine the neutron flux density u. The function u is 
reconstructed uniquely from these measurements. Let us assume that the source function F is 
also unknown. We make an additional measurement X and try to determine the pair functions u 
and F from the known functions l, Zs, ~, @ and X, i.e., to determine in addition the radiation 
sources. The question of how, where, and how much to measure in order to determine the pair 
u and F from these measurements is the main difficulty in the formulation of the inverse prob- 
lem. 

We proceed to the study of the corresponding mathematical models. Under certain assump- 
tions the neutron flux density u satisfies the following linear multivelocity nonstationary 
anisotropic transfer equation: 

u~(t, x, v )+ vVxU(t, x, v)~= (Pu)(t, x, v)+ F(t, x, v), 

(t, x, v)E (o, T) • • (1 )  

(t, (t, x, x, f  Xt, x, v, v')dv'; 
.q, 

where T is the measurement time; ~i is the region in which the neutron transfer process oc- 
curs; and, ~= is the region where the neutron velocities Change. In the case of a one-velo- 
city model, ~= is the unit sphere in R ~. 

We write the initial and boundary conditions in the form 

u(O, x, V) qD(x, v), (x, V) 6QIX f2~, [2) 

u(t, x, v ) = ~ ( t ,  x, v), (t, x, v)E(O, T) x O f ~ i x ~ : ( n ~ ,  v)<O. (3) 

The problem (1)-(3) has been studied by many authors. Among a large number of works we call 
attention to [1-6]. The existence and uniqueness of the solution of this problem are proved 
in the most diverse classes of functions. The answer to the question of where to place addi- 
tional sensors in order to measure the neutron flux depends primarily on what we know about 
the source function to be determined. Let us assume that the function F(t, x, v) = f(t)0(t, 
x, v) + R(t, x, v), where the functions Q and R are given, while f is unknown (this distribu- 
tion occurs, for example in the case when the sources are distributed uniformly over the re- 
actor and emit neutrons isotropically; in this case O---I and R---0). We perform a measurement 
at a fixed point on the surface of the reactor (xo6@f~l) of the outgoing flux density of neu- 
trons moving with a fixed velocity vo, i.e., we give the condition of overdetermination 

u(t, xo, Vo)=X(O, tE(O, T). (4) 

The inverse problem of determining the pair of functions u and f from the conditions (1)-(4) 
was studied in [I, 2]. Under certain conditions a unique solution of this problem exists and 
is determined by a constructive method. Let us assume that the source function has the form 

r . . . . . . .  ,. 
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F(t, x, v )= f (t, v)O. (t, x, v )+ R (t, x, v), 

where the functions Q and R are given, while the function f must be determined. This case 
occurs, for example, with a uniform but nonisotropic source distribution inside the reactor. 
We shall measure the neutron flux at an interior point of the region ~t, i.e., we shall place 
a sensor measuring the neutron flux at a given point inside the reactor at all times t@(0, T). 
The condition of overdetermination will assume the following form: 

u (t, x0, v ) =  x(t, v), (t, v)E (0, T ) x  ~ .  (5) 

The inverse problem of determining the pair of functions u and f from the conditions (1)-(3) 
and (5) has precisely one solution under definite restrictions on the input data for the prob- 
lem [i]. 

Let x0@0~1, , i.e., the measurement is carried out on the surface of the reactor. In 
this case, the solution of the problem (1)-(3) and (5) is not always unique. The solution 
will not be unique in all cases when some neutrons have a velocity vo oriented, in a certain 
sense, opposite to the direction of the outer normal at the point xo, i.e., (nxo, vo) < O. 
To simplify the presentation we shall assume that R------E~,----Z-~--0, Q~I We shall study the 
continuous nonnegative function g(t, v) equal to zero at t = 0 and outside a quite small nei- 
ghborhood of the vector Vo; in addition, for some to > 0 g(to, vo) = i. We set 

t 

V(t,  x, v ) : l ! ' g ( ~  ' v)d% t<o~(x ,  --v), 

j g(,~, v)d,, t ~ ( x ,  --v), 
t--e*(x, --v) 

where  o~ (x, v) ---- max {t : x + vt ff OQl}. 

We verify directly that the pair of functions V and g satisfies the equation 

Vt(t,  x, v )+vv .~V( t ,  x, v ) = g ( t ,  v), (t, x, v) CO 

w i t h  homogeneous  i n i t i a l  (2) and bounda ry  (3) c o n d i t i o n s  and a homogeneous  c o n d i t i o n  o f  o v e r -  
determination (5). We note that V~/~0, g~/~O. This pair of functions can be added to any so- 
lution u and f of the problem (1)-(3), (5) and a different solution can be obtained for the 
same problem differing from the starting solution. Thus if the solution of the problem (1)- 
(3) and (5) exists, then it is not unique. 

We note that in the case (nxo , v) > 0 for all v6~2 the solution of the problem (1)-(3) 
and (5) exists and is unique under certain restrictions on the input data of the problem, 
which can be proved by following the proof of Theorem 2 from [2]. 

Thus if the source function depends only on t, then to determine it uniquely it is suf- 
ficient to measure the neutron flux on the surface of the reactor. If, however, f = f(t, v), 
then the neutron flux must be measured inside the reactor. 

A complex of measurements enabling the determination of nonuniform sources which are con- 
stant in time is indicated in [7, 8]. 

2. In this section we shall present a scheme for determining the pair of functions (u, 
f) from the conditions (1)-(3) and (5) with 9---0 using the theory of semigroups. 

Let us assume that the source function can be represented in the form 

where Q is a given function and the function f is to be determined. We note that the method 
of semigroups was developed for the transfer equation in [5, 6]. 

We shall study the differential opqerator 

Au = - -  vVxU. 

in the space of continuous functions C(D) satisfying the condition (3)with 9-0. It generates 
the strongly continuous semigroup of operators T(t),whose properties we shall use to solve 
the inverse problem. We introduce the operators 
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Then in the space C(D) there arises the abstract inverse problem: 

u t = Au + L~u + Ld ,  

The solution of the problems 
operator A as follows: 

(6) and 

(6) 

"h=o = ~, (7) 

Lau=%. (8) 

(7) is written out in terms of the semigroup of the 

t 

. (t) = T (t) 9 + .I T (!-- s) [L~ (s) u (s) § G (s) I (s)] as. 
0 

(9) 

Using the additional information (8) we obtain one more equation, applying to (6) the opera- 
tor L~: 

Z; (0 = LaAu + L,X + L~Llf, (10) 

where  t he  o p e r a t o r  L~ o p e r a t e s ,  j u s t  as the  o p e r a t o r  L~, a t  some f i x e d  x = xo .  

To c a l c u l a t e  Au i n  (10) we must use  t h e  f o r m u l a  ( 9 ) .  However ,  i n  t h i s  c a s e ,  (10) t r a n s -  
fo rms  i n t o  a V o l t e r r a  e q u a t i o n  o f  t h e  f i r s t  k i n d  and in  o r d e r  to  s o l v e  e f f i c i e n t l y  t h e  s y s t em 
o f  o p e r a t o r  i n t e g r a l  e q u a t i o n s  o b t a i n e d  i t  must  be  r e d u c e d  by d i f f e r e n t i a t i o n  t o  an e q u a t i o n  
of the second kind. The use of this standard technique gives rise to a derivative in the equa- 
tions, and as a result the system of integral equations, consisting of Eq. (9) and the differ- 
entiated equation (I0), must be expanded by adding to it the equation for u'(t). For this we 
can use Eq. (6), in which the quantity Au is calculated just as before with the help of (9). 
The calculations yield the following system of operator integral equations for u(t), f(t) and 
M(t) = u'(t): 

u (t) = T (t) q~ -k [ T (t - -  s) [L i  ( s ) .  (s) q- L2 (s) [ (s)] ds, 

7t 

f(t) = 7(0 + .t' [K(~, s)u(s) + L(t, s)M(s) + P,(t, s)f(s)] as, 
0 

t 

M (t) = .&/(l) q- .f [Kt (t, s) u (s) q- Lt (t, s) M (s) -k R~ (t, s) f (s)] ds. 
0 

(Ii) 

The continuous operator kernels K, L, R, Ki, Li, R~ can be written out in an explicit form, 
but because of the cumbersomeness of these expressions we omit the long calculations. 

It is now easy to prove the existence and uniqueness of the solution of the inverse prob- 
lem. This problem is actually equivalent to the system (II), but this latter system is a Vol- 
terra system and its solution is obtained by the method of successive approximations, with 
which the n-th approximation Un(t) , fn(t), M~(t) is obtained from the preceding approximation 
using the formulas (ii), where u = un-,,<f =~fn-1, M = Mn-, mUstbe substituted on the right 
sides of the equations. The stability of the solution of the system (II) and therefore of the 
inverse problem, which, substituting the explicit form of the functions f(t) and M(t), have 
the following form: 

il u (t) Hc,[0 n G C (I] ~ IJ + JJ A9 H + 1) X Hc,~, T~), 

II f (t)II <~ c (lI ~ If § II X~ II § II Z IIc,~o, n) ,  

follows in a standard manner from Grunwall's lemma. 

NOTATION 

~, total scattering cross section; Zs, scattering function; F, source function; u, neu- 
tron flux density; ~, incoming neutron flux density; and, ~ , initial neutron spatial and ve- 
locity distribution. 
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CALCULATION OF A LAMINAR BOUNDARY LAYER 

ON A ROTATING POROUS DISK 

V. D. Borisevich and E. P. Potanin UDC 532.526.75 

Averaging of noninertial terms over the boundary-layer section in the equations 
of motion is used to study the effect of suction and injection on the hydrody- 
namic flow near a rotating disk. 

Control of a boundary layer hy suction or injection of one or the other liquid through 
a porous disk is a technique which is widely used in technology at present [I, 2]. 

Solution of the laminar boundary-layer equations with consideration of the effect of 
flow through the porous surface of the body over which the flow takes place is a complex prob- 
lem which in most cases is solved numerically [3]. However, in a number of technical appli- 
cations there is a need for analytical expressions for the hydrodynamic flow profiles and 
boundary-layer thicknesses [4, 5]. In a number of problems the Slezkin--Targa method has been 
used for this purpose. This method consists of averaging the nonlinear terms in the equa- 
tions of motion over the boundary-layer thickness [6, 7]. 

In the present study a modification of this method will be used to calculate the laminar 
boundary layer in a viscous incompressible liquid on a rotating porous disk of infinite radi- 
us in the presence of uniform suction or injection of a liquid with the same physical proper- 
ties as the main liquid. 

In the notation generally used the equations of the spatial boundary layer on a rotating 
disk have the form [6]: 

0=U U d---U---u + w - - 'gu  v -~ 1 _ _ ~  + ,v - - ,  (1)  
8r Oz r f9 Or Oz ~, 
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